首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230670篇
  免费   18042篇
  国内免费   9670篇
工业技术   258382篇
  2023年   2815篇
  2022年   5128篇
  2021年   7793篇
  2020年   6031篇
  2019年   5215篇
  2018年   6443篇
  2017年   7056篇
  2016年   6633篇
  2015年   7858篇
  2014年   10367篇
  2013年   12680篇
  2012年   14146篇
  2011年   15197篇
  2010年   13424篇
  2009年   13189篇
  2008年   13070篇
  2007年   12373篇
  2006年   11722篇
  2005年   9944篇
  2004年   7835篇
  2003年   7414篇
  2002年   7933篇
  2001年   7103篇
  2000年   5576篇
  1999年   4598篇
  1998年   3440篇
  1997年   2911篇
  1996年   2591篇
  1995年   2307篇
  1994年   1873篇
  1993年   1545篇
  1992年   1449篇
  1991年   1260篇
  1990年   1246篇
  1989年   1100篇
  1988年   983篇
  1987年   902篇
  1986年   783篇
  1985年   755篇
  1984年   730篇
  1982年   682篇
  1981年   685篇
  1979年   750篇
  1978年   785篇
  1977年   751篇
  1976年   770篇
  1975年   719篇
  1974年   725篇
  1973年   726篇
  1972年   707篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.  相似文献   
12.
13.
Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK–RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.; Methods: The effects of point-mutated RANKL (mRANKL-MT) on osteoclastogenesis were assessed by tartrate-resistant acid phosphatase (TRAP), resorption pit formation, quantitative real-time polymerase chain reaction (qPCR), western blot, NFATc1 nuclear translocation, micro-CT and histomorphological assay in wild type RANKL (mRANKL-WT)-induced in vitro and in vivo experimental mice model. Results: As a proof of concept, treatment with the mutant RANKL led to the stimulation of GSK-3β phosphorylation, as well as the inhibition of NFATc1 translocation, mRNA expression of TRAP and OSCAR, TRAP activity, and bone resorption, in RANKL-induced mouse models; and Conclusions: The results of our study demonstrate that the mutant RANKL can be used as a therapeutic agent for osteoporosis by inhibiting RANKL-induced osteoclastogenesis via comparative inhibition of RANKL. Moreover, the mutant RANKL was found to lack the toxic side effects of most osteoporosis treatments.  相似文献   
14.
Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell–deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.  相似文献   
15.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
16.
洪礼武 《大氮肥》2021,44(2):124-126
在传统检测手段无法满足越来越趋向大型化、超大型化的塔器整体两侧直线度的过程检测和控制保障背景下,打破传统思维,大胆创新检测手段,自行设计开发出超大型塔器整体两侧直线度检测整套技术,充分解决超大型塔器整体两侧直线度的检测难题.  相似文献   
17.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
18.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
19.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
20.
The recycling of solid waste is a win-win solution for humans and nature. For this purpose, magnesite tailings and silicon kerf waste were employed to prepare MgO–Mg2SiO4 composite ceramics by solid-state reaction synthesis in the present work. Then, effects of sintering temperature and raw material ratio on as-prepared ceramics were systematically studied. As-prepared ceramics showed improvement in their relative density (from 47.55%–68.12% to 90.96%–95.25%) and cold compressive strength (from 7.34–118.66 MPa to 303.39–546.65 MPa) with the increase in sintering temperature from 1300 to 1600 °C. In addition, it was found that Si promoted synthesis process of Mg2SiO4 phase through transient liquid phase sintering and Fe2O3 accelerated sintering process through activation sintering. Consequently, the presence of Mg2SiO4 phase effectively improved the density and strength of MgO–Mg2SiO4 composite ceramic, while reducing its thermal conductivity. This work provides a potential reutilization strategy for magnesite tailings, and as-prepared products are expected to be applied in fields of construction, metallurgy, and chemical industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号